Справочник по математике: подготовка школьников к ЕГЭ и ОГЭ в разделе Планиметрия с акцентом на вычисление площади круга
Ищете ресурс, чтобы подготовить школьников к ЕГЭ и ОГЭ по математике? Справочник по планиметрии может стать отличным помощником. В нем вы найдете все необходимые формулы и правила, в том числе и для вычисления площади круга.
Площадь круга и его частей. Длина окружности и ее дуг
Основные определения и свойства
Фигура | Рисунок | Определения и свойства |
Окружность | Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки - центра окружности | |
Дуга | Часть окружности, расположенная между двумя точками окружности | |
Круг | ||
Сектор | Часть круга, ограниченная двумя радиусами | |
Сегмент | Часть круга, ограниченная хордой | |
Правильный многоугольник | Выпуклый многоугольник, у которого все стороны равны и все углы равны | |
Около любого правильного многоугольника можно описать окружность |
Окружность |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки - центра окружности |
Дуга |
Часть окружности, расположенная между двумя точками окружности |
Круг |
Сектор |
Часть круга, ограниченная двумя радиусами |
Сегмент |
Часть круга, ограниченная хордой |
Правильный многоугольник |
Выпуклый многоугольник, у которого все стороны равны и все углы равны Около любого правильного многоугольника можно описать окружность |
Определение 1. Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.
Определение 2. Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.
Замечание 1. Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.
Определение 3. Числом π (пи) называют число, равное площади круга радиуса 1.
Замечание 2. Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:
Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.
Формулы для площади круга и его частей
Формулы для длины окружности и её дуг
Площадь круга
Рассмотрим две окружности с общим центром (концентрические окружности) и радиусами радиусами 1 и R, в каждую из которых вписан правильный n – угольник (рис. 1).
Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1.
Рис.1
Площадь правильного n – угольника, вписанного в окружность радиуса R, равна
Площадь правильного n – угольника, вписанного в окружность радиуса 1, равна
Следовательно,
Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1, стремится к π, то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R, стремится к числу πR2.
Таким образом, площадь круга радиуса R, обозначаемая S, равна
S = πR2.
Длина окружности
Рассмотрим правильный n – угольник B1B2…Bn , вписанный в окружность радиуса радиуса R, и опустим из центраO окружности перпендикуляры на все стороны многоугольника (рис. 2).
Рис.2
Поскольку площадь n – угольника B1B2…Bn равна
то, обозначая длину окружности радиуса R буквой C, мы, в соответствии с определением 2, при увеличении n получаем равенство:
откуда вытекает формула для длины окружности радиуса R:
C = 2πR.
Следствие. Длина окружности радиуса 1 равна 2π.
Длина дуги
Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.
Рис.3
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Площадь сектора
Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.
Рис.4
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Площадь сегмента
Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.
Рис.5
Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем
Следовательно,
В случае, когда величина α выражена в в радианах, получаем
Следовательно,
На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.
Как рассчитать площадь предмета?
Рассчет площади предмета зависит от его формы. Вот несколько примеров, как рассчитать площадь для различных геометрических фигур:
Квадрат или прямоугольник: Площадь квадрата или прямоугольника можно рассчитать, умножив длину на ширину. Формула для площади прямоугольника: Площадь = длина x ширина.
Треугольник: Площадь треугольника можно рассчитать, умножив длину основания на высоту и разделив полученный результат на 2. Формула для площади треугольника: Площадь = (основание x высота) / 2.
Круг: Площадь круга можно рассчитать, умножив квадрат радиуса на число "пи" (3.14). Формула для площади круга: Площадь = π x радиус².
Трапеция: Площадь трапеции можно рассчитать, сложив длину оснований, умножив полученную сумму на высоту и разделив результат на 2. Формула для площади трапеции: Площадь = ((основание 1 + основание 2) / 2) x высота.
Параллелограмм: Площадь параллелограмма можно рассчитать, умножив длину одного основания на высоту, которая проходит перпендикулярно к этому основанию. Формула для площади параллелограмма: Площадь = основание x высота.
Если предмет имеет сложную форму, то можно разбить его на несколько геометрических фигур, рассчитать их площади и затем сложить полученные значения, чтобы получить общую площадь предмета.